The Early History & Development Of A Hoverpod
Thursday 28 May 2015
Composite materials (also called composition materials or shortened to composites) are materials made from two or more constituent materials with significantly different physical or chemical properties, that when combined, produce a material with characteristics different from the individual components. The individual components remain separate and distinct within the finished structure. The new material may be preferred for many reasons: common examples include materials which are stronger, lighter or less expensive when compared to traditional materials.
Typical engineered composite materials include:
• Composite building materials such as cements, concrete
• Reinforced plastics such as fibre-reinforced polymer
• Metal Composites
• Ceramic Composites (composite ceramic and metal matrices)
Composite materials are generally used for buildings, bridges and structures such as boat hulls, swimming pool panels, race car bodies, shower stalls, bathtubs, storage tanks, imitation granite and cultured marble sinks and counter tops. The most advanced examples perform routinely on spacecraft and aircraft in demanding environments.
Contents
• 1 History
• 2 Examples
o 2.1 Materials
o 2.2 Products
• 3 Overview
• 4 Constituents
o 4.1 Matrices
4.1.1 Resins
4.1.2 Other matrices
o 4.2 Reinforcements
4.2.1 Fibre
4.2.2 Other Reinforcement
o 4.3 Cores
• 5 Fabrication methods
o 5.1 Mould overview
o 5.2 Vacuum bag moulding
o 5.3 Pressure bag moulding
o 5.4 Autoclave moulding
o 5.5 Resin transfer moulding (RTM)
o 5.6 Other fabrication methods
5.6.1 Finishing methods
o 5.7 Tooling
• 6 Physical properties
o 6.1 Failure
o 6.2 Testing
• 7 See also
• 8 References
• 9 Further reading
• 10 External links
History
This section requires expansion. (February 2012)
The earliest man-made composite materials were straw and mud combined to form bricks for building construction. Ancient brick-making was documented by Egyptian tomb paintings.
Wattle and daub is one of the oldest man-made composite materials, at over 6000 years old. Concrete is also a composite material, and is used more than any other man-made material in the world. As of 2006, about 7.5 billion cubic metres of concrete are made each year—more than one cubic metre for every person on Earth.
• Woody plants, both true wood from trees and such plants as palms and bamboo, yield natural composites that were used prehistorically by mankind and are still used widely in construction and scaffolding.
• Plywood 3400 BC by the Ancient Mesopotamians; gluing wood at different angles gives better properties than natural wood
• Car tonnage layers of linen or papyrus soaked in plaster dates to the First Intermediate Period of Egypt c. 2181–2055 BC and was used for death masks
• Cob (material) Mud Bricks, or Mud Walls, (using mud (clay) with straw or gravel as a binder) have been used for thousands of years.
• Concrete was described by Vitruvius, writing around 25 BC in his Ten Books on Architecture, distinguished types of aggregate appropriate for the preparation of lime mortars. For structural mortars, he recommended pozzolana, which were volcanic sands from the sand like beds of Pozzuoli brownish-yellow-gray in colour near Naples and reddish-brown at Rome. Vitruvius specifies a ratio of 1 part lime to 3 parts pozzolana for cements used in buildings and a 1:2 ratio of lime to pulvis Puteolanus for underwater work, essentially the same ratio mixed today for concrete used at sea Natural cement-stones, after burning, produced cements used in concretes from post-Roman times into the 20th century, with some properties superior to manufactured Portland cement.
• Papier-mâché, a composite of paper and glue, has been used for hundreds of years
• The first artificial fibre reinforced plastic was Bakelite which dates to 1907, although natural polymers such as shellac predate it
• One of the most common and familiar composite is fibreglass, in which small glass fibre are embedded within a polymeric material (normally an epoxy or polyester).The glass fibre is relatively strong and stiff (but also brittle),where as the polymer is ductile (but also weak and flexible ).Thus the resulting fibreglass is relatively stiff, strong, flexible, and ductile
Examples
Materials
Concrete is a mixture of cement and aggregate, giving a robust, strong material that is very widely used.
Plywood is used widely in construction
Composite sandwich structure panel used for testing at NASA
Concrete is the most common artificial composite material of all and typically consists of loose stones (aggregate) held with a matrix of cement. Concrete is a very robust material, much more robust than cement, and will not compress or shatter even under quite a large compressive force. However, concrete cannot survive tensile loading (i.e., if stretched it will quickly break apart). Therefore to give concrete the ability to resist being stretched, steel bars, which can resist high stretching forces, are often added to concrete to form reinforced concrete.
Fibre-reinforced polymers or FRPs include carbon-fibre-reinforced polymer or CFRP, and glass-reinforced plastic or GRP. If classified by matrix then there are thermoplastic composites, short fibre thermoplastics, long fibre thermoplastics or long fibre-reinforced thermoplastics. There are numerous thermo set composites, but advanced systems usually incorporate aramid fibre and carbon fibre in an epoxy resin matrix.
Shape memory polymer composites are high-performance composites, formulated using fibre or fabric reinforcement and shape memory polymer resin as the matrix. Since a shape memory polymer resin is used as the matrix, these composites have the ability to be easily manipulated into various configurations when they are heated above their activation temperatures and will exhibit high strength and stiffness at lower temperatures. They can also be reheated and reshaped repeatedly without losing their material properties. These composites are ideal for applications such as lightweight, rigid, deployable structures; rapid manufacturing; and dynamic reinforcement.
High strain composites are another type of high-performance composites that are designed to perform in a high deformation setting and are often used in deployable systems where structural flexing is advantageous. Although high strain composites exhibit many similarities to shape memory polymers, their performance is generally dependent on the fibre layout as opposed to the resin content of the matrix.
Composites can also use metal fibres reinforcing other metals, as in metal matrix composites (MMC) or ceramic matrix composites (CMC), which includes bone (hydroxyapatite reinforced with collagen fibres), cermet (ceramic and metal) and concrete. Ceramic matrix composites are built primarily for fracture toughness, not for strength.
Organic matrix/ceramic aggregate composites include asphalt concrete, mastic asphalt, mastic roller hybrid, dental composite, syntactic foam and mother of pearl. Chobham armour is a special type of composite armour used in military applications.
Additionally, thermoplastic composite materials can be formulated with specific metal powders resulting in materials with a density range from 2 g/cm³ to 11 g/cm³ (same density as lead). The most common name for this type of material is "high gravity compound" (HGC), although "lead replacement" is also used. These materials can be used in place of traditional materials such as aluminium, stainless steel, brass, bronze, copper, lead, and even tungsten in weighting, balancing (for example, modifying the centre of gravity of a tennis racquet), vibration damping, and radiation shielding applications. High density composites are an economically viable option when certain materials are deemed hazardous and are banned (such as lead) or when secondary operations costs (such as machining, finishing, or coating) is a factor.
A sandwich-structured composite is a special class of composite material that is fabricated by attaching two thin but stiff skins to a lightweight but thick core. The core material is normally low strength material, but its higher thickness provides the sandwich composite with high bending stiffness with overall low density.
Wood is a naturally occurring composite comprising cellulose fibre in a lignin and hemicellulose matrix. Engineered wood includes a wide variety of different products such as wood fibre board, plywood, oriented strand board, wood plastic composite (recycled wood fibre in polyethylene matrix), Pykrete (sawdust in ice matrix), Plastic-impregnated or laminated paper or textiles, Arborite, Formica (plastic) and Micarta. Other engineered laminate composites, such as Mallite, use a central core of end grain balsa wood, bonded to surface skins of light alloy or GRP. These generate low-weight, high rigidity materials.
Products
Fibre-reinforced composite materials have gained popularity (despite their generally high cost) in high-performance products that need to be lightweight, yet strong enough to take harsh loading conditions such as aerospace components (tails, wings, fuselages, propellers), boat and scull hulls, bicycle frames and racing car bodies. Other uses include fishing rods, storage tanks, swimming pool panels, and baseball bats. The new Boeing 787 structure including the wings and fuselage is composed largely of composites. Composite materials are also becoming more common in the realm of orthopaedic surgery.
Carbon composite is a key material in today's launch vehicles and heat shields for the re-entry phase of spacecraft. It is widely used in solar panel substrates, antenna reflectors and yokes of spacecraft. It is also used in payload adapters, inter-stage structures and heat shields of launch vehicles. Furthermore disk brake systems of airplanes and racing cars are using carbon/carbon material, and the composite material with carbon fibres and silicon carbide matrix has been introduced in luxury vehicles and sports cars.
In 2006, a fibre-reinforced composite pool panel was introduced for in-ground swimming pools, residential as well as commercial, as a non-corrosive alternative to galvanized steel.
In 2007, an all-composite military Humvee was introduced by TPI Composites Inc and Armor Holdings Inc, the first all-composite military vehicle. By using composites the vehicle is lighter, allowing higher payloads. In 2008, carbon fibre and DuPont Kevlar (five times stronger than steel) were combined with enhanced thermo set resins to make military transit cases by ECS Composites creating 30-percent lighter cases with high strength.
Pipes and fittings for various purposes like transportation of potable water, fire-fighting, irrigation, seawater, desalinated water, chemical and industrial waste, and sewage are now manufactured in glass reinforced plastics.
Overview
Carbon fibre composite part.
Composites are made up of individual materials referred to as constituent materials. There are two main categories of constituent materials: matrix and reinforcement. At least one portion of each type is required. The matrix material surrounds and supports the reinforcement materials by maintaining their relative positions. The reinforcements impart their special mechanical and physical properties to enhance the matrix properties. A synergism produces material properties unavailable from the individual constituent materials, while the wide variety of matrix and strengthening materials allows the designer of the product or structure to choose an optimum combination.
Engineered composite materials must be formed to shape. The matrix material can be introduced to the reinforcement before or after the reinforcement material is placed into the mould cavity or onto the mould surface. The matrix material experiences a melding event, after which the part shape is essentially set. Depending upon the nature of the matrix material, this melding event can occur in various ways such as chemical polymerization or solidification from the melted state.
A variety of moulding methods can be used according to the end-item design requirements. The principal factors impacting the methodology are the natures of the chosen matrix and reinforcement materials. Another important factor is the gross quantity of material to be produced. Large quantities can be used to justify high capital expenditures for rapid and automated manufacturing technology. Small production quantities are accommodated with lower capital expenditures but higher labour and tooling costs at a correspondingly slower rate.
Many commercially produced composites use a polymer matrix material often called a resin solution. There are many different polymers available depending upon the starting raw ingredients. There are several broad categories, each with numerous variations. The most common are known as polyester, vinyl ester, epoxy, phenolic, polyimide, polyamide, polypropylene, PEEK, and others. The reinforcement materials are often fibres but also commonly ground minerals. The various methods described below have been developed to reduce the resin content of the final product, or the fibre content is increased. As a rule of thumb, lay up results in a product containing 60% resin and 40% fibre, whereas vacuum infusion gives a final product with 40% resin and 60% fibre content. The strength of the product is greatly dependent on this ratio.
Martin Hubbe and Lucian A Lucia consider Wood to be a natural composite of cellulose fibres in a matrix of lignin.
Constituents
Matrices
Resins
Typically, most common polymer-based composite materials, including fibreglass, carbon fibre, and Kevlar, include at least two parts, the substrate and the resin.
Polyester resin tends to have yellowish tint, and is suitable for most backyard projects. Its weaknesses are that it is UV sensitive and can tend to degrade over time, and thus generally is also coated to help preserve it. It is often used in the making of surfboards and for marine applications. Its hardener is peroxide, often MEKP (methyl ethyl ketone peroxide). When the peroxide is mixed with the resin, it decomposes to generate free radicals, which initiate the curing reaction. Hardeners in these systems are commonly called catalysts, but since they do not re-appear unchanged at the end of the reaction, they do not fit the strictest chemical definition of a catalyst.
Vinylester resin tends to have a purplish to bluish to greenish tint. This resin has lower viscosity than polyester resin, and is more transparent. This resin is often billed as being fuel resistant, but will melt in contact with gasoline. This resin tends to be more resistant over time to degradation than polyester resin, and is more flexible. It uses the same hardeners as polyester resin (at a similar mix ratio) and the cost is approximately the same.
Epoxy resin is almost totally transparent when cured. In the aerospace industry, epoxy is used as a structural matrix material or as structural glue.
Shape memory polymer (SMP) resins have varying visual characteristics depending on their formulation. These resins may be epoxy-based, which can be used for auto body and outdoor equipment repairs; cyanate-ester-based, which are used in space applications; and acrylate-based, which can be used in very cold temperature applications, such as for sensors that indicate whether perishable goods have warmed above a certain maximum temperature. These resins are unique in that their shape can be repeatedly changed by heating above their glass transition temperature (Tg). When heated, they become flexible and elastic, allowing for easy configuration. Once they are cooled, they will maintain their new shape. The resins will return to their original shapes when they are reheated above their Tg. The advantage of shape memory polymer resins is that they can be shaped and reshaped repeatedly without losing their material properties. These resins can be used in fabricating shape memory composites.
Other matrices
Common matrices include mud (wattle and daub), cement (concrete), polymers (fibre reinforced plastics), metals and ceramics. Road surfaces are often made from asphalt concrete which uses bitumen as a matrix. Unusual matrices such as ice are sometime proposed as in pykecrete.
Reinforcements
Fibre
Differences in the way the fibres are laid out give different strengths and ease of manufacture
Reinforcement usually adds rigidity and greatly impedes crack propagation. Thin fibres can have very high strength, and provided they are mechanically well attached to the matrix they can greatly improve the composite's overall properties.
Fibre-reinforced composite materials can be divided into two main categories normally referred to as short fibre-reinforced materials and continuous fibre-reinforced materials. Continuous reinforced materials will often constitute a layered or laminated structure. The woven and continuous fibre styles are typically available in a variety of forms, being pre-impregnated with the given matrix (resin), dry, uni-directional tapes of various widths, plain weave, harness satins, braided, and stitched.
The short and long fibres are typically employed in compression moulding and sheet moulding operations. These come in the form of flakes, chips, and random mate (which can also be made from a continuous fibre laid in random fashion until the desired thickness of the ply / laminate is achieved).
Common fibres used for reinforcement include glass fibres, carbon fibres, cellulose (wood/paper fibre and straw) and high strength polymers for example aramid.
Other Reinforcement
Concrete uses aggregate, and reinforced concrete additionally uses steel bars (rebar) to tension the concrete. Steel mesh or wires are also used in some glass and plastic products.
Cores
Many composite layup designs also include a co-curing or post-curing of the prepreg with various other media, such as honeycomb or foam. This is commonly called a sandwich structure. This is a more common layup for the manufacture of radomes, doors, cowlings, or non-structural parts.
Open- and closed-cell-structured foams like polyvinylchloride, polyurethane, polyethylene or polystyrene foams, balsa wood, syntactic foams, and honeycombs are commonly used core materials. Open- and closed-cell metal foam can also be used as core materials.
Fabrication methods
Fabrication of composite materials is accomplished by a wide variety of techniques, including:
• Advanced fibre placement (Automated fibre placement)
• Tailored fibre placement
• Fiberglas spray lay-up process
• Filament winding
• Lanxide process
• Tufting
• Z-pinning
Composite fabrication usually involves wetting, mixing or saturating the reinforcement with the matrix, and then causing the matrix to bind together (with heat or a chemical reaction) into a rigid structure. The operation is usually done in an open or closed forming mould, but the order and ways of introducing the ingredients varies considerably.
Mould overview
Within a mould, the reinforcing and matrix materials are combined, compacted, and cured (processed) to undergo a melding event. After the melding event, the part shape is essentially set, although it can deform under certain process conditions. For a thermo set polymeric matrix material, the melding event is a curing reaction that is initiated by the application of additional heat or chemical reactivity such as organic peroxide. For a thermoplastic polymeric matrix material, the melding event is solidification from the melted state. For a metal matrix material such as titanium foil, the melding event is a fusing at high pressure and a temperature near the melting point.
For many moulding methods, it is convenient to refer to one mould piece as a "lower" mould and another mould piece as an "upper" mould. Lower and upper refer to the different faces of the moulded panel, not the mould's configuration in space. In this convention, there is always a lower mould, and sometimes an upper mould. Part construction begins by applying materials to the lower mould. Lower mould and upper mould are more generalized descriptors than more common and specific terms such as male side, female side, a-side, b-side, tool side, bowl, hat, mandrel, etc. Continuous manufacturing uses a different nomenclature.
The moulded product is often referred to as a panel. For certain geometries and material combinations, it can be referred to as a casting. For certain continuous processes, it can be referred to as a profile.
Vacuum bag moulding
Vacuum bag moulding uses a flexible film to enclose the part and seal it from outside air. A vacuum is then drawn on the vacuum bag and atmospheric pressure compresses the part during the cure. Vacuum bag material is available in a tube shape or a sheet of material. When a tube shaped bag is used, the entire part can be enclosed within the bag. When using sheet bagging materials, the edges of the vacuum bag are sealed against the edges of the mould surface to enclose the part against an air-tight mould. When bagged in this way, the lower mould is a rigid structure and the upper surface of the part is formed by the flexible membrane vacuum bag. The flexible membrane can be a reusable silicone material or an extruded polymer film. After sealing the part inside the vacuum bag, a vacuum is drawn on the part (and held) during cure. This process can be performed at either ambient or elevated temperature with ambient atmospheric pressure acting upon the vacuum bag. A vacuum pump is typically used to draw a vacuum. An economical method of drawing a vacuum is with a venturi vacuum and air compressor.
A vacuum bag is a bag made of strong rubber-coated fabric or a polymer film used to compress the part during cure or hardening. In some applications the bag encloses the entire material, or in other applications a mould is used to form one face of the laminate with the bag being a single layer to seal to the outer edge of the mould face. When using a tube shaped bag, the ends of the bag are sealed and the air is drawn out of the bag through a nipple using a vacuum pump. As a result, uniform pressure approaching one atmosphere is applied to the surfaces of the object inside the bag, holding parts together while the adhesive cures. The entire bag may be placed in a temperature-controlled oven, oil bath or water bath and gently heated to accelerate curing.
Vacuum bagging is widely used in the composites industry as well. Carbon fibre fabric and fibreglass, along with resins and epoxies are common materials laminated together with a vacuum bag operation.
Woodworking applications
In commercial woodworking facilities, vacuum bags are used to laminate curved and irregular shaped work pieces.
Typically, polyurethane or vinyl materials are used to make the bag. A tube shaped bag is open at both ends. The piece, or pieces to be glued are placed into the bag and the ends sealed. One method of sealing the open ends of the bag is by placing a clamp on each end of the bag. A plastic rod is laid across the end of the bag; the bag is then folded over the rod. A plastic sleeve with an opening in it is then snapped over the rod. This procedure forms a seal at both ends of the bag, when the vacuum is ready to be drawn.
A "platen" is sometimes used inside the bag for the piece being glued to lie on. The platen has a series of small slots cut into it, to allow the air under it to be evacuated. The platen must have rounded edges and corners to prevent the vacuum from tearing the bag.
When a curved part is to be glued in a vacuum bag, it is important that the pieces being glued be placed over a solidly built form, or has an air bladder placed under the form. This air bladder has access to "free air" outside the bag. It is used to create an equal pressure under the form, preventing it from being crushed.
Pressure bag moulding
This process is related to vacuum bag moulding in exactly the same way as it sounds. A solid female mould is used along with a flexible male mould. The reinforcement is placed inside the female mould with just enough resin to allow the fabric to stick in place (wet layup). A measured amount of resin is then liberally brushed indiscriminately into the mould and the mould is then clamped to a machine that contains the male flexible mould. The flexible male membrane is then inflated with heated compressed air or possibly steam. The female mould can also be heated. Excess resin is forced out along with trapped air. This process is extensively used in the production of composite helmets due to the lower cost of unskilled labour. Cycle times for a helmet bag moulding machine vary from 20 to 45 minutes, but the finished shells require no further curing if the moulds are heated.
Autoclave moulding
A process using a two-sided mould set that forms both surfaces of the panel. On the lower side is a rigid mould and on the upper side is a flexible membrane made from silicone or an extruded polymer film such as nylon. Reinforcement materials can be placed manually or robotically. They include continuous fibre forms fashioned into textile constructions. Most often, they are pre-impregnated with the resin in the form of prepreg fabrics or unidirectional tapes. In some instances, a resin film is placed upon the lower mould and dry reinforcement is placed above. The upper mould is installed and vacuum is applied to the mould cavity. The assembly is placed into an autoclave. This process is generally performed at both elevated pressure and elevated temperature. The use of elevated pressure facilitates a high fibre volume fraction and low void content for maximum structural efficiency.
Resin transfer moulding (RTM)
RTM is a process using a rigid two-sided mould set that forms both surfaces of the panel. The mould is typically constructed from aluminium or steel, but composite moulds are sometimes used. The two sides fit together to produce a mould cavity. The distinguishing feature of resin transfer moulding is that the reinforcement materials are placed into this cavity and the mould set is closed prior to the introduction of matrix material. Resin transfer moulding includes numerous varieties which differ in the mechanics of how the resin is introduced to the reinforcement in the mould cavity. These variations include everything from the RTM methods used in out of autoclave composite manufacturing for high-tech aerospace components to vacuum infusion (for resin infusion see also boat building) to vacuum assisted resin transfer moulding (VARTM). This process can be performed at either ambient or elevated temperature.
Other fabrication methods
Other types of fabrication include press moulding, transfer moulding, pultrusion moulding, filament winding, casting, centrifugal casting, continuous casting and slip forming. There are also forming capabilities including CNC filament winding, vacuum infusion, wet lay-up, compression moulding, and thermoplastic moulding, to name a few. The use of curing ovens and paint booths is also needed for some projects.
Finishing methods
The finishing of the composite parts is also critical in the final design. Many of these finishes will include rain-erosion coatings or polyurethane coatings.
Tooling
The mould and mould inserts are referred to as "tooling." The mould/tooling can be constructed from a variety of materials. Tooling materials include invar, steel, aluminium, reinforced silicone rubber, nickel, and carbon fibre. Selection of the tooling material is typically based on, but not limited to, the coefficient of thermal expansion, expected number of cycles, end item tolerance, desired or required surface condition, method of cure, glass transition temperature of the material being moulded, moulding method, matrix, cost and a variety of other considerations.
Physical properties
The physical properties of composite materials are generally not isotropic (independent of direction of applied force) in nature, but rather are typically anisotropic (different depending on the direction of the applied force or load). For instance, the stiffness of a composite panel will often depend upon the orientation of the applied forces and/or moments. Panel stiffness is also dependent on the design of the panel. For instance, the fibre reinforcement and matrix used the method of panel build, thermo set versus thermoplastic, type of weave, and orientation of fibre axis to the primary force.
In contrast, isotropic materials (for example, aluminium or steel), in standard wrought forms, typically have the same stiffness regardless of the directional orientation of the applied forces and/or moments.
The relationship between forces/moments and strains/curvatures for an isotropic material can be described with the following material properties: Young's Modulus, the shear Modulus and the Poisson's ratio, in relatively simple mathematical relationships. For the anisotropic material, it requires the mathematics of a second order tensor and up to 21 material property constants. For the special case of orthogonal isotropy, there are three different material property constants for each of Young's Modulus, Shear Modulus and Poisson's ratio—a total of 9 constants to describe the relationship between forces/moments and strains/curvatures.
Techniques that take advantage of the anisotropic properties of the materials include mortise and tenon joints (in natural composites such as wood) and Pi Joints in synthetic composites.
Failure
Shock, impact, or repeated cyclic stresses can cause the laminate to separate at the interface between two layers, a condition known as delamination. Individual fibres can separate from the matrix e.g. fibre pull-out.
Composites can fail on the microscopic or macroscopic scale. Compression failures can occur at both the macro scale or at each individual reinforcing fibre in compression buckling. Tension failures can be net section failures of the part or degradation of the composite at a microscopic scale where one or more of the layers in the composite fail in tension of the matrix or failure of the bond between the matrix and fibres.
Some composites are brittle and have little reserve strength beyond the initial onset of failure while others may have large deformations and have reserve energy absorbing capacity past the onset of damage. The variations in fibres and matrices that are available and the mixtures that can be made with blends leave a very broad range of properties that can be designed into a composite structure. The best known failure of a brittle ceramic matrix composite occurred when the carbon-carbon composite tile on the leading edge of the wing of the Space Shuttle Columbia fractured when impacted during take-off. It led to catastrophic break-up of the vehicle when it re-entered the Earth's atmosphere on 1 February 2003.
Compared to metals, composites have relatively poor bearing strength.
Testing
To aid in predicting and preventing failures, composites are tested before and after construction. Pre-construction testing may use finite element analysis (FEA) for ply-by-ply analysis of curved surfaces and predicting wrinkling, crimping and dimpling of composites. Materials may be tested during manufacturing and after construction through several non-destructive methods including ultrasonic’s, thermography, shearography and X-ray radiography, and laser bond inspection for NDT of relative bond strength integrity in a localized area.
Team Principal.
#peterhulbert
#f1hoverpod
#f1hoverpodracing
#hoverpod
Early efforts to Develop Hovercraft
There have been many attempts to understand the principles of high air pressure below hulls and wings. To a great extent, the majority of these can be termed "ground effect" or "water effect" vehicles rather than hovercraft. The principal difference is that a hovercraft can lift itself while still, whereas the majority of other designs require forward motion to create lift. These active-motion "surface effect vehicles" are known in specific cases as ekranoplan and hydrofoils.
The first mention in the historical record of the concepts behind surface-effect vehicles that used the term hovering was by Swedish scientist Emanuel Swedenborg in 1716.
The shipbuilder Sir John Isaac Thornycroft patented an early design for an air cushion ship / hovercraft in the 1870s, but suitable, powerful, engines were not available until the 20th century.
In 1915, the Austrian Dagobert Müller (1880–1956) built the world's first "water effect" vehicle. Shaped like a section of a large aerofoil (this creates a low pressure area above the wing much like an aircraft), the craft was propelled by four aero engines driving two submerged marine propellers, with a fifth engine that blew air under the front of the craft to increase the air pressure under it. Only when in motion could the craft trap air under the front, increasing lift. The vessel also required a depth of water to operate and could not transition to land or other surfaces. Designed as a fast torpedo boat, the Versuchsgleitboot had a top speed over 32 knots (59 km/h). It was thoroughly tested and even armed with torpedoes and machine guns for operation in the Adriatic. It never saw actual combat, however, and as the war progressed it was eventually scrapped due to the lack of interest and perceived need, and its engines returned to the Air Force.
The theoretical grounds for motion over an air layer were constructed by Konstantin Eduardovich Tsiolkovskii in 1926 and 1927.
In 1929, Andrew Kucher of Ford began experimenting with the "Levapad" concept, metal disks with pressurized air blown through a hole in the center. Levapads do not offer stability on their own. Several must be used together to support a load above them. Lacking a skirt, the pads had to remain very close to the running surface. He initially imagined these being used in place of casters and wheels in factories and warehouses, where the concrete floors offered the smoothness required for operation. By the 1950s, Ford showed a number of toy models of cars using the system, but mainly proposed its use as a replacement for wheels on trains, with the Levapads running close to the surface of existing rails.
In 1931, Finnish aero engineer Toivo J. Kaario began designing a developed version of a vessel using an air cushion and built a prototype Pintaliitäjä (Surface Soarer), in 1937. Kaario's design included the modern features of a lift engine blowing air into a flexible envelope for lift. Kaario never received funding to build his design, however.[citation needed] Kaario's efforts were followed closely in the Soviet Union by Vladimir Levkov, who returned to the solid-sided design of the Versuchsgleitboot. Levkov designed and built a number of similar craft during the 1930s, and his L-5 fast-attack boat reached 70 knots (130 km/h) in testing. However, the start of World War II put an end to Levkov's development work.
During World War II, an engineer in the United States of America, Charles Fletcher, invented a walled air cushion vehicle, the Glidemobile. Because the project was classified by the U.S. government, Fletcher could not file a patent.
Christopher Cockerell
The idea of the modern hovercraft is most often associated with a British mechanical engineer Sir Christopher Cockerell. Cockerell's group was the first to develop the use of an annular ring of air for maintaining the cushion, the first to develop a successful skirt, and the first to demonstrate a practical vehicle in continued use.
Cockerell came across the key concept in his design when studying the ring of airflow when high-pressure air was blown into the annular area between two concentric tin cans, one coffee and the other from cat food. This produced a ring of airflow, as expected, but he noticed an unexpected benefit as well; the sheet of fast moving air presented a sort of physical barrier to the air on either side of it. This effect, which he called the "momentum curtain", could be used to trap high-pressure air in the area inside the curtain, producing a high-pressure plenum that earlier examples had to build up with considerably more airflow. In theory, only a small amount of active airflow would be needed to create lift and much less than a design that relied only on the momentum of the air to provide lift, like a helicopter. In terms of power, a hovercraft would only need between one quarter to one half of the power required by a helicopter.
Cockerell built several models of his hovercraft design in the early 1950s, featuring an engine mounted to blow from the front of the craft into a space below it, combining both lift and propulsion. He demonstrated the model flying over many Whitehall carpets in front of various government experts and ministers, and the design was subsequently put on the secret list. In spite of tireless efforts to arrange funding, no branch of the military was interested, as he later joked, "the navy said it was a plane not a boat; the air force said it was a boat not a plane; and the army was 'plain not interested.'
SR.N1 general arrangement
This lack of military interest meant that there was no reason to keep the concept secret, and it was declassified. Cockerell was finally able to convince the National Research Development Corporation to fund development of a full-scale model. In 1958, the NRDC placed a contract with Saunders-Roe for the development of what would become the SR.N1, short for "Saunders-Roe, Nautical 1".
The SR.N1 was powered by a 450 hp Alvis Leonides engine powering a vertical fan in the middle of the craft. In addition to providing the lift air, a portion of the airflow was bled off into two channels on either side of the craft, which could be directed to provide thrust. In normal operation this extra airflow was directed rearward for forward thrust, and blew over two large vertical rudders that provided directional control. For low-speed manoeuvrability, the extra thrust could be directed fore or aft, differentially for rotation.
The SR.N1 made its first hover on 11 June 1959, and made its famed successful crossing of the English Channel on 25 July 1959. In December 1959, the Duke of Edinburgh visited Saunders-Roe at East Cowes and persuaded the chief test-pilot, Commander Peter Lamb, to allow him to take over the SR.N1's controls. He flew the SR.N1 so fast that he was asked to slow down a little. On examination of the craft afterwards, it was found that she had been dished in the bow due to excessive speed, damage that was never allowed to be repaired, and was from then on affectionately referred to as the 'Royal Dent'.
Skirts and other improvements
Testing quickly demonstrated that the idea of using a single engine to provide air for both the lift curtain and forward flight required too many trade-offs. A Blackburn Marboré for forward thrust and two large vertical rudders for directional control were added, producing the SR.N1 Mk II. A further upgrade with the Armstrong Siddeley Viper produced the Mk III. Further modifications, especially the addition of pointed nose and stern areas, produced the Mk IV.
Although the SR.N1 was successful as a testbed, the design hovered too close to the surface to be practical; at 9 inches (23 cm)[citation needed] even small waves would hit the bow. The solution was offered by Cecil Latimer-Needham, following a suggestion made by his business partner Arthur Ord-Hume. In 1958, he suggested the use of two rings of rubber to produce a double-walled extension of the vents in the lower fuselage. When air was blown into the space between the sheets it exited the bottom of the skirt in the same way it formerly exited the bottom of the fuselage, re-creating the same momentum curtain, but this time at some distance from the bottom of the craft.
Latimer-Needham and Cockerell devised a 4 feet (1.2 m) high skirt design, which was fitted to the SR.N1 to produce the Mk V, displaying hugely improved performance, with the ability to climb over obstacles almost as high as the skirt.[citation needed] In October 1961, Latimer-Needham sold his skirt patents to Westland, who had recently taken over Saunders Roe's interest in the hovercraft. Experiments with the skirt design demonstrated a problem; it was originally expected that pressure applied to the outside of the skirt would bend it inward, and the now-displaced airflow would cause it to pop back out. What actually happened is that the slight narrowing of the distance between the walls resulted in less airflow, which in turn led to more air loss under that section of the skirt. The fuselage above this area would drop due to the loss of lift at that point, and this led to further pressure on the skirt.
After considerable experimentation, Denys Bliss at Hovercraft Development Ltd. found the solution to this problem. Instead of using two separate rubber sheets to form the skirt, a single sheet of rubber was bent into a U shape to provide both sides, with slots cut into the bottom of the U forming the annular vent. When deforming pressure was applied to the outside of this design, air pressure in the rest of the skirt forced the inner wall to move in as well, keeping the channel open. Although there was some deformation of the curtain, the airflow within the skirt was maintained and through natural factors such as escape of air and balance of pressure within the skirt.
Team Principal
#peterhulbert
#f1hoverpod
#f1hoverpodracing
Subscribe to:
Posts (Atom)